sections

OUTER SPACE

noun

Any region of space beyond limits determined with reference to the boundaries of a celestial body or system, especially:

a. The region of space immediately beyond Earth's atmosphere.

b. Interplanetary or interstellar space.

one

Outer Space

Outer space, or simply just space, is the void that exists between celestial bodies, including the Earth.[1] It is not completely empty, but consists of a hard vacuum containing a low density of particles: predominantly a plasma of hydrogen and helium, as well as electromagnetic radiation, magnetic fields, neutrinos, dust and cosmic rays. The baseline temperature, as set by the background radiation from the Big Bang, is 2.7 kelvin (K).[2] Plasma with a density of less than one hydrogen atom per cubic meter and a temperature of millions of kelvin in the space between galaxies accounts for most of the baryonic (ordinary) matter in outer space; local concentrations have condensed into stars and galaxies. In most galaxies, observations provide evidence that 90% of the mass is in an unknown form, called dark matter, which interacts with other matter through gravitational but not electromagnetic forces.[3][4] Data indicate that the majority of the mass-energy in the observable Universe is a poorly understood vacuum energy of space which astronomers label dark energy.[5][6] Intergalactic space takes up most of the volume of the Universe, but even galaxies and star systems consist almost entirely of empty space.

There is no firm boundary where space begins. However the Kármán line, at an altitude of 100 km (62 mi) above sea level,[7] is conventionally used as the start of outer space in space treaties and for aerospace records keeping. The framework for international space law was established by the Outer Space Treaty, which was passed by the United Nations in 1967. This treaty precludes any claims of national sovereignty and permits all states to freely explore outer space. In 1979, the Moon Treaty made the surfaces of objects such as planets, as well as the orbital space around these bodies, the jurisdiction of the international community. Despite the drafting of UN resolutions for the peaceful uses of outer space, anti-satellite weapons have been tested in Earth orbit.

Humans began the physical exploration of space during the 20th century with the advent of high-altitude balloon flights, followed by manned rocket launches. Earth orbit was first achieved by Yuri Gagarin of the Soviet Union in 1961 and unmanned spacecraft have since reached all of the known planets in the Solar System. Due to the high cost of getting into space, manned spaceflight has been limited to low Earth orbit and the Moon. In August 2012, Voyager 1 became the first man-made spacecraft to enter interstellar space.

Outer space represents a challenging environment for human exploration because of the dual hazards of vacuum and radiation. Microgravity also has a negative effect on human physiology that causes both muscle atrophy and bone loss. In addition to solving all of these health and environmental issues, humans will also need to find a way to significantly reduce the cost of getting into space if they want to become a space faring civilization. Proposed concepts for doing this are non-rocket spacelaunch, momentum exchange tethers and space elevators.

two

Discovery

Antique Vacuum Pump

The original Magdeburg hemispheres (lower left) used to demonstrate Otto von Guericke's vacuum pump (right)

In 350 BC, Greek philosopher Aristotle suggested that nature abhors a vacuum, a principle that became known as the horror vacui. This concept built upon a 5th-century BC ontological argument by the Greek philosopher Parmenides, who denied the possible existence of a void in space.[8] Based on this idea that a vacuum could not exist, in the West it was widely held for many centuries that space could not be empty.[9] As late as the 17th century, the French philosopher René Descartes argued that the entirety of space must be filled.[10]

In ancient China, there were various schools of thought concerning the nature of the heavens, some of which bear a resemblance to the modern understanding. In the 2nd century, astronomer Zhang Heng became convinced that space must be infinite, extending well beyond the mechanism that supported the Sun and the stars. The surviving books of the Hsüan Yeh school said that the heavens were boundless, "empty and void of substance". Likewise, the "sun, moon, and the company of stars float in the empty space, moving or standing still".[11]

The Italian scientist Galileo Galilei knew that air had mass and so was subject to gravity. In 1640, he demonstrated that an established force resisted the formation of a vacuum. However, it would remain for his pupil Evangelista Torricelli to create an apparatus that would produce a vacuum in 1643. This experiment resulted in the first mercury barometer and created a scientific sensation in Europe. The French mathematician Blaise Pascal reasoned that if the column of mercury was supported by air then the column ought to be shorter at higher altitude where the air pressure is lower.[12] In 1648, his brother-in-law, Florin Périer, repeated the experiment on the Puy-de-Dôme mountain in central France and found that the column was shorter by three inches. This decrease in pressure was further demonstrated by carrying a half-full balloon up a mountain and watching it gradually inflate, then deflate upon descent.[13]

A glass display case holds a mechanical device with a lever arm, plus two metal hemispheres attached to draw ropes The original Magdeburg hemispheres (lower left) used to demonstrate Otto von Guericke's vacuum pump (right) In 1650, German scientist Otto von Guericke constructed the first vacuum pump: a device that would further refute the principle of horror vacui. He correctly noted that the atmosphere of the Earth surrounds the planet like a shell, with the density gradually declining with altitude. He concluded that there must be a vacuum between the Earth and the Moon.[14]

Back in the 15th century, German theologian Nicolaus Cusanus speculated that the Universe lacked a center and a circumference. He believed that the Universe, while not infinite, could not be held as finite as it lacked any bounds within which it could be contained.[15] These ideas led to speculations as to the infinite dimension of space by the Italian philosopher Giordano Bruno in the 16th century. He extended the Copernican heliocentric cosmology to the concept of an infinite Universe filled with a substance he called aether, which did not cause resistance to the motions of heavenly bodies.[16] English philosopher William Gilbert arrived at a similar conclusion, arguing that the stars are visible to us only because they are surrounded by a thin aether or a void.[17] This concept of an aether originated with ancient Greek philosophers, including Aristotle, who conceived of it as the medium through which the heavenly bodies moved.[18]

The concept of a Universe filled with a luminiferous aether remained in vogue among some scientists until the early 20th century. This form of aether was viewed as the medium through which light could propagate.[19] In 1887, the Michelson–Morley experiment tried to detect the Earth's motion through this medium by looking for changes in the speed of light depending on the direction of the planet's motion. However, the null result indicated something was wrong with the concept. The idea of the luminiferous aether was then abandoned. It was replaced by Albert Einstein's theory of special relativity, which holds that the speed of light in a vacuum is a fixed constant, independent of the observer's motion or frame of reference.[20][21]

The first professional astronomer to support the concept of an infinite Universe was the Englishman Thomas Digges in 1576.[22] But the scale of the Universe remained unknown until the first successful measurement of the distance to a nearby star in 1838 by the German astronomer Friedrich Bessel. He showed that the star 61 Cygni had a parallax of just 0.31 arcseconds (compared to the modern value of 0.287″). This corresponds to a distance of over 10 light years.[23] The distance to the Andromeda Galaxy was determined in 1923 by American astronomer Edwin Hubble by measuring the brightness of cepheid variables in that galaxy, a new technique discovered by Henrietta Leavitt.[24] This established that the Andromeda galaxy, and by extension all galaxies, lay well outside the Milky Way.[25]

The earliest known estimate of the temperature of outer space was by the Swiss physicist Charles É. Guillaume in 1896. Using the estimated radiation of the background stars, he concluded that space must be heated to a temperature of 5–6 K. British physicist Arthur Eddington made a similar calculation to derive a temperature of 3.18° in 1926. 1933 German physicist Erich Regener used the total measured energy of cosmic rays to estimate an intergalactic temperature of 2.8 K.[26]

The modern concept of outer space is based on the "Big Bang" cosmology, first proposed in 1931 by the Belgian physicist Georges Lemaître.[27] This theory holds that the observable Universe originated from a very compact form that has since undergone continuous expansion. The background energy released during the initial expansion has steadily decreased in density, leading to a 1948 prediction by American physicts Ralph Alpher and Robert Herman of a temperature of 5 K for the temperature of space.[26]

The term outer space was used as early as 1842 by the English poet Lady Emmeline Stuart-Wortley in her poem "The Maiden of Moscow".[28] The expression outer space was used as an astronomical term by Alexander von Humboldt in 1845.[29] It was later popularized in the writings of H. G. Wells in 1901.[30] The shorter term space is actually older, first used to mean the region beyond Earth's sky in John Milton's Paradise Lost in 1667.[31]

three

formation and state

The Big Bang Model

This is an artist's concept of the metric expansion of space, where a volume of the Universe is represented at each time interval by the circular sections. At left is depicted the rapid inflation from the initial state, followed thereafter by steady expansion to the present day, shown at right.

According to the Big Bang theory, the Universe originated in an extremely hot and dense state about 13.8 billion years ago and began expanding rapidly. About 380,000 years later the Universe had cooled sufficiently to allow protons and electrons to combine and form hydrogen—the so-called recombination epoch. When this happened, matter and energy became decoupled, allowing photons to travel freely through space.[32] The matter that remained following the initial expansion has since undergone gravitational collapse to create stars, galaxies and other astronomical objects, leaving behind a deep vacuum that forms what is now called outer space.[33] As light has a finite velocity, this theory also constrains the size of the directly observable Universe.[32] This leaves open the question as to whether the Universe is finite or infinite.

The present day shape of the Universe has been determined from measurements of the cosmic microwave background using satellites like the Wilkinson Microwave Anisotropy Probe. These observations indicate that the observable Universe is flat, meaning that photons on parallel paths at one point will remain parallel as they travel through space to the limit of the observable Universe, except for local gravity.[34] The flat Universe, combined with the measured mass density of the Universe and the accelerating expansion of the Universe, indicates that space has a non-zero vacuum energy, which is called dark energy.[35]

Estimates put the average energy density of the Universe at the equivalent of 5.9 protons per cubic meter, including dark energy, dark matter, and baryonic matter (ordinary matter composed of atoms). The atoms account for only 4.6% of the total energy density, or a density of one proton per four cubic meters.[36] The density of the Universe, however, is clearly not uniform; it ranges from relatively high density in galaxies—including very high density in structures within galaxies, such as planets, stars, and black holes—to conditions in vast voids that have much lower density, at least in terms of visible matter.[37] Unlike the matter and dark matter, the dark energy seems not to be concentrated in galaxies: although dark energy may account for a majority of the mass-energy in the Universe, dark energy's influence is 5 orders of magnitude smaller than the influence of gravity from matter and dark matter within the Milky Way.[38]

four

environment

Vacuum of Space

Description: Part of the Hubble Ultra Deep Field. Even the brightest galaxies in this image have an apparent magnitude of 22.
Date: September 24, 2003 - January 16, 2004
Source: Hubblesite.org
Centered on UDF 8026
Author: NASA, ESA, S. Beckwith (STScI) and the HUDF Team

Outer space is the closest natural approximation to a perfect vacuum. It has effectively no friction, allowing stars, planets and moons to move freely along their ideal orbits. However, even the deep vacuum of intergalactic space is not devoid of matter, as it contains a few hydrogen atoms per cubic meter.[39] By comparison, the air we breathe contains about 1025 molecules per cubic meter.[40] The sparse density of matter in outer space means that electromagnetic radiation can travel great distances without being scattered: the mean free path of a photon in intergalactic space is about 1023 km, or 10 billion light years.[41] In spite of this, extinction, which is the absorption and scattering of photons by dust and gas, is an important factor in galactic and intergalactic astronomy.[42.

Stars, planets and moons retain their atmospheres by gravitational attraction. Atmospheres have no clearly delineated boundary: the density of atmospheric gas gradually decreases with distance from the object until it becomes indistinguishable from the surrounding environment.[43] The Earth's atmospheric pressure drops to about 0.032 Pa at 100 kilometres (62 miles) of altitude,[44] compared to 100,000 Pa for the International Union of Pure and Applied Chemistry (IUPAC) definition of standard pressure. Beyond this altitude, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the Sun and the dynamic pressure of the solar wind. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather.[45]

On the Earth, temperature is defined in terms of the kinetic activity of the surrounding atmosphere. However the temperature of the vacuum cannot be measured in this way. Instead, the temperature is determined by measurement of the radiation. All of the observable Universe is filled with photons that were created during the Big Bang, which is known as the cosmic microwave background radiation (CMB). (There is quite likely a correspondingly large number of neutrinos called the cosmic neutrino background.) The current black body temperature of the background radiation is about 3 K (−270 °C; −454 °F).[46] Some regions of outer space can contain highly energetic particles that have a much higher temperature than the CMB, such as the corona of the Sun where temperatures can range over 1.2–2.6 MK.[47]

Outside of a protective atmosphere and magnetic field, there are few obstacles to the passage through space of energetic subatomic particles known as cosmic rays. These particles have energies ranging from about 106 eV up to an extreme 1020 eV of ultra-high-energy cosmic rays.[48] The peak flux of cosmic rays occurs at energies of about 109 eV, with approximately 87% protons, 12% helium nuclei and 1% heavier nuclei. In the high energy range, the flux of electrons is only about 1% of that of protons.[49] Cosmic rays can damage electronic components and pose a health threat to space travelers.[50] According to astronauts, like Don Pettit, space has a burned/metallic odor, similar to that of the scent of an arc welding torch.[51][52]

Despite the harsh environment, several life forms have been found that can withstand extreme space conditions for extended periods. Species of lichen carried on the ESA BIOPAN facility survived exposure for ten days in 2007.[53] Seeds of Arabidopsis thaliana and Nicotiana tabacum germinated after being exposed to space for 1.5 years.[54] A strain of bacillus subtilis has survived 559 days when exposed to low-Earth orbit or a simulated martian environment.[55] The lithopanspermia hypothesis suggests that rocks ejected into outer space from life-harboring planets may successfully transport life forms to another habitable world. A conjecture is that just such a scenario occurred early in the history of the Solar System, with potentially microorganism-bearing rocks being exchanged between Venus, Earth, and Mars.[56]

five

environment

Space is a partial vacuum: its different regions are defined by the various atmospheres and "winds" that dominate within them, and extend to the point at which those winds give way to those beyond. Geospace extends from Earth's atmosphere to the outer reaches of Earth's magnetic field, whereupon it gives way to the solar wind of interplanetary space. Interplanetary space extends to the heliopause, whereupon the solar wind gives way to the winds of the interstellar medium. Interstellar space then continues to the edges of the galaxy, where it fades into the intergalactic void.

Geospace

The lower half is the blue-white planet in low illumination. Nebulous red streamers climb upward from the limb of the disk toward the black sky. The Space Shuttle is visible along the left edge.

Geospace

Aurora australis observed from the Space Shuttle Discovery, on STS-39, May 1991 (orbital altitude: 260 km)

Geospace is the region of outer space near Earth. Geospace includes the upper region of the atmosphere and the magnetosphere.[87] The Van Allen radiation belt lies within the geospace. The outer boundary of geospace is the magnetopause, which forms an interface between the planet's magnetosphere and the solar wind. The inner boundary is the ionosphere.[88] As the physical properties and behavior of near Earth space is affected by the behavior of the Sun and space weather, the field of geospace is interlinked with heliophysics; the study of the Sun and its impact on the Solar System planets.[89]

The volume of geospace defined by the magnetopause is compacted in the direction of the Sun by the pressure of the solar wind, giving it a typical subsolar distance of 10 Earth radii from the center of the planet. However, the tail can extend outward to more than 100–200 Earth radii.[90] The Moon passes through the geospace tail during roughly four days each month, during which time the surface is shielded from the solar wind.[91]

Geospace is populated by electrically charged particles at very low densities, the motions of which are controlled by the Earth's magnetic field. These plasmas form a medium from which storm-like disturbances powered by the solar wind can drive electrical currents into the Earth’s upper atmosphere. During geomagnetic storms two regions of geospace, the radiation belts and the ionosphere, can become strongly disturbed. These storms increase fluxes of energetic electrons that can permanently damage satellite electronics, disrupting telecommunications and GPS technologies, and can also be a hazard to astronauts, even in low Earth orbit. They also create aurorae seen near the magnetic poles.[92]

Although it meets the definition of outer space, the atmospheric density within the first few hundred kilometers above the Kármán line is still sufficient to produce significant drag on satellites.[84] This region contains material left over from previous manned and unmanned launches that are a potential hazard to spacecraft. Some of this debris re-enters Earth's atmosphere periodically.[93]

Cislunar space

The region outside Earth's atmosphere and extending out to just beyond the Moon’s orbit, including the Lagrangian points, is sometimes referred to as cis-lunar space.[94]

Interplanetary space

Interplanetary Space

The sparse plasma (blue) and dust (white) in the tail of comet Hale–Bopp are being shaped by pressure from solar radiation and the solar wind, respectively

Interplanetary space, the space around the Sun and planets of the Solar System, is the region dominated by the interplanetary medium, which extends out to the heliopause where the influence of the galactic environment starts to dominate over the magnetic field and particle flux from the Sun. Interplanetary space is defined by the solar wind, a continuous stream of charged particles emanating from the Sun that creates a very tenuous atmosphere (the heliosphere) for billions of miles into space. This wind has a particle density of 5–10 protons/cm3 and is moving at a velocity of 350–400 km/s (780,000–890,000 mph).[95] The distance and strength of the heliopause varies depending on the activity level of the solar wind.[96] The discovery since 1995 of extrasolar planets means that other stars must possess their own interplanetary media.[97]

The volume of interplanetary space is a nearly total vacuum, with a mean free path of about one astronomical unit at the orbital distance of the Earth. However, this space is not completely empty, and is sparsely filled with cosmic rays, which include ionized atomic nuclei and various subatomic particles. There is also gas, plasma and dust, small meteors, and several dozen types of organic molecules discovered to date by microwave spectroscopy.[98]

Interplanetary space contains the magnetic field generated by the Sun.[95] There are also magnetospheres generated by planets such as Jupiter, Saturn, Mercury and the Earth that have their own magnetic fields. These are shaped by the influence of the solar wind into the approximation of a teardrop shape, with the long tail extending outward behind the planet. These magnetic fields can trap particles from the solar wind and other sources, creating belts of magnetic particles such as the Van Allen radiation belt. Planets without magnetic fields, such as Mars, have their atmospheres gradually eroded by the solar wind.[99]

Interstellar space

Interstellar Space

Bow shock formed by the magnetosphere of the young star LL Orionis (center) as it collides with the Orion Nebula flow

Interstellar space is the physical space within a galaxy not occupied by stars or their planetary systems. The contents of interstellar space are called the interstellar medium. The average density of matter in this region is about 106 particles per m3, but this varies from a low of about 104 – 105 in regions of sparse matter up to about 108 – 1010 in dark nebulae. Regions of star formation may reach 1012 – 1014 particles per m3 (as a comparison, Earth's atmospheric density at sea level is on the order of 1025 particles per m3[100]). Nearly 70% of the mass of the interstellar medium consists of lone hydrogen atoms. This is enriched with helium atoms as well as trace amounts of heavier atoms formed through stellar nucleosynthesis. These atoms can be ejected into the interstellar medium by stellar winds, or when evolved stars begin to shed their outer envelopes such as during the formation of a planetary nebula. The cataclysmic explosion of a supernova will generate an expanding shock wave consisting of ejected materials.

A number of molecules exist in interstellar space, as can tiny, 0.1 μm dust particles.[101] The tally of molecules discovered through radio astronomy is steadily increasing at the rate of about four new species per year. Large regions of higher density matter known as molecular clouds allow chemical reactions to occur, including the formation of organic polyatomic species. Much of this chemistry is driven by collisions. Energetic cosmic rays penetrate the cold, dense clouds and ionize hydrogen and helium, resulting, for example, in the trihydrogen cation. An ionized helium atom can then split relatively abundant carbon monoxide to produce ionized carbon, which in turn can lead to organic chemical reactions.[102]

The local interstellar medium is a region of space within 100 parsecs (pc) of the Sun, which is of interest both for its proximity and for its interaction with the Solar System. This volume nearly coincides with a region of space known as the Local Bubble, which is characterized by a lack of dense, cold clouds. It forms a cavity in the Orion Arm of the Milky Way galaxy, with dense molecular clouds lying along the borders, such as those in the constellations of Ophiuchus and Taurus. (The actual distance to the border of this cavity varies from 60 to 250 pc or more.) This volume contains about 104–105 stars and the local interstellar gas counterbalances the astrospheres that surround these stars, with the volume of each sphere varying depending on the local density of the interstellar medium. The Local Bubble World contains dozens of warm interstellar clouds with temperatures of up to 7,000 K and radii of 0.5–5 pc.[103]

When stars are moving at sufficiently high peculiar velocities, their astrospheres can generate bow shocks as they collide with the interstellar medium. For decades it was assumed that the Sun had a bow shock. In 2012, data from Interstellar Boundary Explorer (IBEX) and NASA's Voyager probes showed that the Sun's bow shock does not exist. Instead, these authors argue that a subsonic bow wave defines the transition from the solar wind flow to the interstellar medium.[104][105] A bow shock is the third boundary of an astrosphere after the termination shock and the astropause (called the heliopause in the Solar System).[105]

Intergalactic space

Interstellar Space

A star forming region in the Large Magellanic Cloud, perhaps the closest Galaxy to Earth's Milky Way

Intergalactic space is the physical space between galaxies. The huge spaces between galaxy clusters are called the voids. Surrounding and stretching between galaxies, there is a rarefied plasma[106] that is organized in a galactic filamentary structure.[107] This material is called the intergalactic medium (IGM). The density of the IGM is 5–200 times the average density of the Universe.[108] It consists mostly of ionized hydrogen; i.e. a plasma consisting of equal numbers of electrons and protons. As gas falls into the intergalactic medium from the voids, it heats up to temperatures of 105 K to 107 K,[109] which is high enough so that collisions between atoms have enough energy to cause the bound electrons to escape from the hydrogen nuclei; this is why the IGM is ionized. At these temperatures, it is called the warm–hot intergalactic medium (WHIM). (Although the gas is very hot by terrestrial standards, 105 K is often called "warm" in astrophysics.) Computer simulations and observations indicate that up to half of the atomic matter in the Universe might exist in this warm-hot, rarefied state.[108][110][111] When gas falls from the filamentary structures of the WHIM into the galaxy clusters at the intersections of the cosmic filaments, it can heat up even more, reaching temperatures of 108 K and above in the so-called intracluster medium.[112]

see also